Received 20 August 2006 Accepted 22 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hossein Aghabozorg,^a* Mohammad Ghadermazi,^a Shabnam Sheshmani^b and Bahar Nakhjavan^a

^aDepartment of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ^bDepartment of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran

Correspondence e-mail: aghabozorg@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.003 Å R factor = 0.031 wR factor = 0.081 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tris(piperazinediium) bis[tris(pyridine-2,6-dicarboxylato)- $\kappa^6 O, N, O'; \kappa^2 O, N$ indate(III)] dodecahydrate

The asymmetric unit of the title compound, $(C_4H_{12}N_2)_3$ -[In($C_7H_3NO_4$)₃]₂·12H₂O, contains one and a half cations, one anion and six water molecules. The In^{III} atom is eightcoordinated by two tridentate and one bidentate pyridine-2,6dicarboxylate ligand. Intra- and intermolecular N-H···O and O-H···O hydrogen bonds seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure.

Comment

Recently, several metal complexes containing anionic forms of pyridine-2,6-dicarboxylic acid, pydcH₂, have been synthesized, (Lü *et al.*, 2005; Ghosh & Bharadwaj, 2004; Brouca-Cabarrecq *et al.*, 2002; Moghimi *et al.*, 2002, 2004; Aghabozorg, Ghadermazi *et al.*, 2006; Aghabozorg, Nakhjavan *et al.*, 2006). In recent years, we have synthesized a few complexes of the proton-transfer compound piperazinediium pyridine-2,6-dicarboxylate, (pipzH₂)(pydc), such as (pipzH₂)[Tl₂(pydc)₂-Cl₄(H₂O)]·4H₂O and (pipzH₂)[Pd(pydc)₂]·2H₂O (Aghabozorg, Ramezanipour *et al.*, 2006). We report here the synthesis and crystal structure of the title complex, (I).

The asymmetric unit of (I) (Fig. 1) contains one and a half cations, one anion and six water molecules. The bond lengths and angles (Table 1) are within normal ranges (Allen *et al.*, 1987). The piperazine rings A (N4/N5/C22–C25) and B (N6/N6a/C26/C26a/C27/C27a) are not planar, having total puckering amplitudes, $Q_{\rm T}$, of 0.906 (5) and 1.431 (4) Å and chair conformations [$\varphi = 24.69 (5)^{\circ}$, $\theta = 54.57 (4)^{\circ}$ and $\varphi = -165.86 (5)^{\circ}$, $\theta = 0.00 (3)^{\circ}$] (Cremer & Pople, 1975). The In^{III} atom is eight-coordinated by two tridentate and one bidentate pyridine-2,6-dicarboxylate ligands. The central In^{III} atom is linked to the ligands by In–O and In–N bonds. These distances are almost in the same range in the In^{III} complexes (Ramezanipour *et al.*, 2005). The In–O and In–N bonds are

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Water molecules and H atoms attached to carbon are omitted for clarity.

in the ranges 2.2434 (14)-2.4532 (15) and 2.2777 (16)-2.3586 (15) Å, respectively (Table 1).

Intra- and intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2).

Experimental

A solution of In₂(SO₄)₃ .xH₂O (518 mg, 1 mmol) in water (20 ml) was added to an aqueous solution of (pipzH₂)(pydc) (506 mg, 2 mmol, 20 ml water) in a 1:2 molar ratio. Colorless crystals of (I) were obtained after allowing the mixture to stand for three weeks at room temperature.

Crystal data

$(C_4H_{12}N_2)_3[In(C_7H_3NO_4)_3]_2 \cdot 12H_2O$	Z = 2
$M_r = 1700.92$	$D_x = 1.682 \text{ Mg m}^-$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.5327 (6) Å	$\mu = 0.79 \text{ mm}^{-1}$
b = 18.1833 (10) Å	T = 294 (2) K
c = 17.5903 (10) Å	Prism, colorless
$\beta = 94.687 \ (5)^{\circ}$	$0.30 \times 0.30 \times 0.20$
V = 3357.6 (3) Å ³	
Data collection	
Bruker SMART 1000 CCD area-	33553 measured re
detector diffractometer	8030 independent
φ and ω scans	6914 reflections w

Absorption correction: multi-scan (SADABS; Sheldrick, 1998) $T_{\rm min}=0.797,\ T_{\rm max}=0.858$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ wR(F²) = 0.081 S = 1.028030 reflections 469 parameters H-atom parameters constrained

-3 0 mm

eflections reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ $\theta_{\rm max} = 28.0^{\circ}$

$w = 1/[\sigma^2(F_o^2) + (0.04P)^2$
+ 5.2 <i>P</i>] where $P = (F_0^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.002$
$\Delta \rho_{\rm max} = 1.25 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.52 \text{ e A}^{-1}$

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Table 1

Selected geometric parameters (Å, °).

In1-O4	2.2434 (14)	O3-C7	1.243 (3)
In1-N2	2.2777 (16)	O4-C7	1.265 (3)
In1-O10	2.2857 (15)	O5-C13	1.253 (3)
In1-N3	2.3132 (18)	O6-C13	1.249 (3)
In1-O6	2.3270 (15)	O7-C14	1.244 (3)
In1-N1	2.3586 (18)	O8-C14	1.255 (3)
In1-O12	2.4419 (16)	O9-C20	1.234 (3)
In1-O8	2.4532 (15)	O10-C20	1.275 (3)
O1-C6	1.262 (3)	O11-C21	1.245 (3)
O2-C6	1.242 (3)	O12-C21	1.247 (3)
O10-In1-N3	69.90 (6)	N3-In1-O12	66.60 (6)
N2-In1-O6	69.72 (5)	O6-In1-O12	90.98 (6)
O10-In1-O6	77.14 (6)	N2-In1-O8	67.67 (5)
O4-In1-N1	70.41 (6)	O6-In1-O8	136.66 (5)
O4-In1-O12	83.78 (6)	O12-In1-O8	71.04 (6)
O10-In1-O12	136.50 (6)		

Table 2	
Hydrogen-bond geometry (Å, °).	

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N4-H4B\cdots O7$	0.90	2.01	2.791 (3)	145
$N4-H4C\cdotsO1^{i}$	0.90	1.84	2.702 (3)	159
$N5-H5A\cdots O14^{ii}$	0.90	1.95	2.792 (3)	155
$N5-H5B\cdots O3^{iii}$	0.90	1.99	2.800 (3)	149
$N6-H6A\cdotsO11$	0.90	1.94	2.780 (3)	155
$N6-H6B\cdots O5^{i}$	0.90	2.00	2.836 (3)	154
O13-H13A···O8	0.96	1.82	2.761 (3)	166
O13−H13B···O17	0.96	2.08	3.026 (4)	170
$O14-H14A\cdots O18^{iv}$	0.96	1.93	2.861 (3)	165
$O14-H14B\cdots O10$	0.96	1.85	2.798 (3)	168
O15-H15A···O13	0.96	1.85	2.761 (3)	159
$O15-H15B\cdots O2^{i}$	0.96	2.00	2.870 (3)	150
O16-H16A···O12	0.96	1.96	2.868 (3)	157
O16−H16B···O15	0.96	1.91	2.862 (3)	171
$O17-H17A\cdots O1^{i}$	0.97	1.91	2.817 (3)	156
$O17 - H17B \cdot \cdot \cdot O5^{v}$	0.96	1.96	2.901 (3)	167
O18-H18A···O3	0.96	1.91	2.826 (3)	159
O18−H18B···O17	0.96	2.09	3.023 (4)	164

Symmetry codes: (i) x + 1, y, z; (ii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y, -z + 1; (v) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

H atoms of water molecules were located in difference syntheses, and refined as riding atoms with distance constraints of O–H = 0.96–0.97 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm O})$. The remaining H atoms were positioned geometrically, with N–H = 0.90 Å (for NH₂) and C–H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C},N)$. The highest peak is located 0.99 Å from atom H13*A*.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We are grateful to Islamic Azad University, Shahr-e Rey Branch, for financial support of this work. The Teacher Training University is also gratefully acknowledged.

References

Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006). Z. Anorg. Allg. Chem. 632. In the press.

- Aghabozorg, H., Nakhjavan, B., Ghadermazi, M. & Ramezanipour, F. (2006). Acta Cryst. E62, m1527-m1529.
- Aghabozorg, H., Ramezanipour, F., Kheirollahi, P. D., Saei, A. A., Shokrollahi, A., Shamsipur, M., Manteghi, F., Soleimannejad, J. & Sharif, M. A. (2006). Z. Anorg. Allg. Chem. 632, 147–154.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Brouca-Cabarrecq, C., Fernandes, A., Jaud, J. & Costes, J. P. (2002). Inorg. Chim. Acta, 332, 54–60.
- Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293–2298.
- Lü, J., Shen, E., Li, Y., Xiao, D., Wang, E. & Xu, L. (2005). *Cryst. Growth Des.* **5**, 65–67.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalai, F., Shamsipur, M. & Chadha, K. K. (2002). *Can. J. Chem.* 80, 1687–1696.
- Moghimi, A., Shokrollahib, A., Shamsipurb, M., Aghabozorg, H. & Ranjbar, M. (2004). J. Mol. Struct. 701, 49–56.
- Ramezanipour, F., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Stoeckli-Evans, H., Soleimannejad, J. & Sheshmani, S. (2005). J. Mol. Struct. 779, 77– 86.
- Sheldrick, G. M. (1998). *SADABS* (Version 2.01) and *SHELXTL* (Version 5.20). Bruker AXS Inc., Madison, Wisconsin, USA.